

Newsletter Herbst 2025

Inhalt – Themenheft Autoimmunerkrankungen

Seite 2 Autoimmunthrombozytopenie (AITP) Seite 12/13 Autoimmune Enzephalitis und paraneoplastische neurologische Syndrome Seite 3 Chronischer Juckreiz im Alter denken Sie an das bullöse Pemphigoid! Seite 14/15 IgA-Nephropathie Seite 4/5 ANA positiv - was nun? Seite 16/17 Was steckt hinter wiederkehrendem Fieber? Periodische Fiebererkrankungen und Seite 6 Autoimmunhämolytische Anämien Autoinflammation Seite 7-9 Polymyositis und Dermatomyositis - idiopathische Seite 18/19 HLA-Assoziationen bei Autoimmunerkrankungen inflammatorische Myopathien im Überblick - Wo liegt ihr diagnostischer Nutzen? Seite 10/11 Diagnostisch relevante Autoantikörper

Seite 20

Autoimmunität - ein Phänomen mit vielen Gesichtern

In Deutschland leiden rund 7 Millionen Menschen an einer der über 80 bekannten Autoimmunerkrankungen. Diese können organspezifisch auftreten – etwa beim Typ-1-Diabetes oder Myasthenia gravis – oder als systemische Erkrankungen, wie beim systemischen Lupus erythematodes.

Autoimmunerkrankungen entstehen durch eine gestörte Immunregulation, bei der sich das Immunsystem dauerhaft gegen körpereigene Strukturen richtet. Dabei wirken genetische und Umweltfaktoren zusammen, insbesondere Virusinfektionen. In seltenen Fällen treten Autoimmunphänomene auch im Rahmen paraneoplastischer Syndrome auf.

Einheitliche Entstehungsmodelle oder sichere Vorhersagen sind nicht möglich – selbst eineilge Zwillinge erkranken nicht immer beide.

Die labordiagnostische Abklärung stützt sich auf drei zentrale Säulen:

- Nachweis von Autoantikörpern
- Histologische Veränderungen in Gewebebiopsien
- Nachweis krankheitsassoziierter HLA-Merkmale

Myasthenia gravis

In diesem Newsletter richten wir den Fokus auf die labormedizinische und pathologische Diagnostik ausgewählter Autoimmunerkrankungen.

Mit freundlichen kollegialen Grüßen

Prof. Dr. med. Tammo von Schrenck Geschäftsführer Medizinisches Labor Oldenburg

Die chronische Autoimmunthrombozytopenie beginnt oft schleichend – nicht selten ist sie ein Zufallsbefund bei einer Blutbildkontrolle.

Dr. med. habil. Gregor Caspari, Prof. Dr. med. Volker Kiefel

Autoimmunthrombozytopenie (AITP)

Thrombozytåre Autoantikörper führen meist zu einem beschleunigten Thrombozytenabbau, seltener zu einer Thrombozytenfunktionsstörung (z. B. einer erworbenen Thrombathenie).

Bei Kindern bis etwa zum 10. Lebensjahr ist der Verlauf häufig akut und folgt einige Tage auf einen viralen Infekt, selten auf eine Impfung. Die Thrombozytenzahl fällt meist unter 20 x 10⁹/L. Auffällige Symptome sind Petechien und Hämatome bereits bei geringen Traumen. Typische Dauer ist Tage bis Wochen.

Die chronische AITP beginnt eher schleichend, oft mit fluktuierenden Thrombozytenzahlen. Sie ist oft ein Zufallsbefund bei einer Blutbildkontrolle aus anderer Ursache. Die Indikation zur Therapie sollte eher durch die Blutungsneigung als durch die Thrombozytenzahl bestimmt werden. Eine Beeinträchtigung der Thrombozytenfunktion durch eine Medikation sollte unbedingt vermieden werden. Bei Kindern senkt die Einschränkung der körperlichen Aktivität das Risiko einer zerebralen Blutung. Etablierte Therapiemaßnahmen sind Kortikosteroide, ggf. Immunsuppressiva, und hochdosiertes i.v. IG.

Eine prophylaktische Thrombozytengabe ist nicht indiziert, nur als therapeutische Ultima ratio bei bedrohlich blutenden Patienten. Eine Splenektomie ist in etwa

2 von 3 Fällen erfolgreich, wegen möglicher schwerwiegender Folgerisiken aber zurückhaltend einzusetzen. Neuere Therapieprinzipien sind Anti-CD20 Antikörper (Rituximab) und Thrombopoetinagonisten.

Bei Patientinnen mit einer zyklischen Thrombopenie, ausgeprägt zu Beginn der Monatsblutung und normalisiert einige Tage später, sprechen die Laboruntersuchungen für eine autoimmune Ursache.

Die neonatale Immunthrombozytopenie wird durch passiv übertragene mütterliche Antikörper verursacht. Medikamentenabhängige Immunthrombozytopenien mit teils sehr niedrigen Thrombozytenzahlen wurden nach Chinidin, Trimethoprim/Sulfamethoxazol, Diclofenac, Rifampicin, Carbamazepin, Ibuprofen, Ranitidin und Vancomycin beobachtet. Bei Verdacht ist ein (Re-) Expositionsversuch kontraindiziert.

Die Diagnostik ist schwierig, da oft nicht das Medikament, sondern ein Stoffwechselprodukt für die Reaktion verantwortlich ist. Wichtigste Maßnahme ist das unverzügliche Absetzen des Medikaments, bei bedrohlichen Blutungen die großzügige Transfusion von Thrombozyten.

Chronischer Juckreiz im Alter - denken Sie an das bullöse Pemphigoid!

Das bullöse Pemphigoid ist die häufigste subepidermale blasenbildende Autoimmundermatose des höheren Lebensalters - und wird dennoch häufig erst verzögert erkannt. Besonders bei nicht-bullösen Verläufen mit juckenden Erythemen, urtikariellen Plaques oder Krusten bleibt die korrekte Diagnose oft aus. Klinisch wird die Erkrankung leicht mit Ekzemen oder Prurigo verwechselt. Auch in der allgemeinpathologischen Diagnostik kann die Zuordnung erschwert sein - insbesondere bei präbullösen oder prurigoähnlichen Verlaufsformen ohne klar sichtbare Spaltbildung. Dabei lässt sich mit einer gezielten Kombination aus Klinik, Histologie, direkter Immunfluoreszenz und serologischer Diagnostik eine sichere Einordnung vornehmen. Je nach nachweisbarem Zielantigen lassen sich heute zahlreiche Unterformen blasenbildender Autoimmundermatosen unterscheiden - es handelt sich hierbei heute um ein differenziertes Spektrum mit teils überlappenden klinischen und histologischen Merkmalen. Auch wenn nicht immer alle Spezialtests verfügbar und im Alltag indiziert sind, bieten wir Ihnen eine gezielte, praxisnahe Diagnostik mit persönlicher Befundung und Beratung - verlässlich, differenzialdiagnostisch fundiert und mit Blick für das Wesentliche.

Klinisch präsentieren sich straffe Blasen mit intakter Blasendecke auf erythematösem Grund, gelegentlich dominieren juckende Plaques, urtikarielle Läsionen oder prurigoforme Läsionen, nicht immer sind hier Blasen zu sehen. Diese präbullösen Verläufe sind diagnostisch

herausfordernd: prurigoforme Ekzeme, urtikarielle Exantheme und auch medikamenten-induzierte Reaktionen werden klinisch häufig differentialdiagnostisch bedacht.

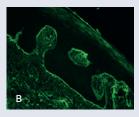
Während manifeste Blasen meist kein Problem in der histopathologischen Befundung darstellen, zeigen sich in prämonitorischen frühen Stadien oft keine oder nur subtile subepidermale Kontinuitätstrennungen. Stattdessen finden sich entzündliche Infiltrate mit eosinophilen Granulozyten, wobei diese sich typischerweise im Bereich der Basalmembran anlagern. Ohne entsprechenden klinischen Kontext kann dies leicht fehlinterpretiert werden. Der gezielte Hinweis auf eine mögliche bullöse Autoimmundermatose und auch die Übermittlung eines klinischen Bildes des Hautbefundes zur klinisch-pathologischen Korrelation ist daher entscheidend für die weiterführende Diagnostik.

Dermatopathologischdiagnostischer Standard ist die Kombination aus:

- konventioneller Histologie (frische Läsion, möglichst eine komplette intakte Blase oder auch der Übergang Blasenrand zu Blase; formalinfixiert),
- direkter Immunfluoreszenz (DIF) aus periläsionaler Haut (fixiert in NaCloder Michel-Medium).

Die DIF zeigt typischerweise lineare IgG- und C3-Ablagerungen an der dermoepidermalen Junktionszone (ABB. 1).

Laborhinweis - direkte Immunfluoreszenz (DIF)


Die DIF ist unsere diagnostische Spezialität bei blasenbildenden Autoimmundermatosen. Für eine aussagekräftige Untersuchung benötigen wir eine frische Hautprobe (Stanzbiopsie, 3-5 mm), unfixiert in NaCl oder Michel-Medium. Gerne unterstützen wir Sie bei der Planung der Probennahme, erläutern die Indikation und übernehmen die Befundung.

Eine Kontaktaufnahme ist jederzeit willkommen. Wir beraten Sie gerne persönlich.

Wichtig: Die Biopsie muss gezielt geplant werden – Krusten oder abgeheilte Läsionen (sog. Sekundäreffloreszenzen) sind diagnostisch höchst ungeeignet. Insbesondere bei klinisch unklaren Fällen ohne klinisch sichtbare Blasen kann die gezielte Entnahme mehrerer Biopsien – für Histologie und direkte Immunfluoreszenz – entscheidend zur differentialdiagnostischen Klärung beitragen.

Gerade bei älteren Patientinnen und Patienten mit chronischem Juckreiz lohnt sich ein genauer Blick – Blasen muss man nicht immer sehen, aber man sollte wissen, wann man an sie denken muss. Wir unterstützen Sie gern bei der differenzialdiagnostischen Abklärung und helfen, die richtigen Fragen zu stellen.

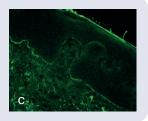


ABB. 1 Direkte Immunfluoreszenz bei bullösem Pemphigoid (jeweils periläsionale Haut, 200×):
 A: Lineare Ablagerung von C3c entlang der dermoepidermalen Junktionszone.
 B: Lineare Ablagerung von Fibrinogen im Bereich der Basalmembran.
 C: Lineare Ablagerung von IgG, ebenfalls bandförmig an der dermoepidermalen Junktionszone.

Diese Muster sind charakteristisch für das bullöse Pemphigoid und stützen - in Zusammenschau mit Klinik und Serologie - die Diagnose.

Literatur:

- Schmidt E, Zillikens D. The diagnosis and treatment of autoimmune blistering skin diseases. Dtsch Arzteblint. 2011;108(23):399-405. DOI:10.3238/arztebl.2011.0399
- Witte M, Zillikens D, Schmidt E. Diagnosis of Autoimmune Blistering Diseases. Front Med (Lausanne). 2018 Nov 2,5:296. doi:10.3389/fmed.2018.00296. PMID: 30450358: PMCID: PMC6224342.

ANA positiv - was nun?

Wie immer im Leben: Es kommt darauf an... Doch worauf?

In erster Linie auf eine definierte klinische Symptomatik. Mit der ANA-Untersuchung verhält es sich wie mit Tumormarkern oder der Borrelien-Serologie – diese Untersuchungen sollten nur bei begründetem klinischem Verdacht angefordert werden. Alles andere führt im positiven Fall eher zu Verwirrung. ANA eignen sich weder als Suchtest noch als Ausschlussdiagnostik für eine Autoimmunerkrankung (AIE)!

Warum ist das so?

Jeder Mensch hat ANA in einer gewissen Konzentration - Europäer im Durchschnitt einen Titer < 1:80, Asiaten durchaus Titer bis zu 1:320, individuell können jedoch auch hochtitrige ANA ohne pathologischen Wert beobachtet werden. Denn Antikörper gegen nukleäre Antigene (ANA) gehören zu den sogenannten "natürlichen Autoantikörpern". Entgegen der allgemeinen Vorstellung werden bei der klonalen Deletion der B- und T-Lymphozyten nicht grundsätzlich alle autoreaktiven Zellen aussortiert. Es wird lediglich auf Autoantigene geprüft, mit denen die Lymphozyten auf ihrer Reise durch den Körper natürlicherweise in Kontakt kommen, z. B. Plasmaproteine, membranständige Moleküle etc. Rein intrazelluläre Strukturen wie Zellkernantigene gehören nicht dazu, denn auch beim "natürlichen" Zelltod (Apoptose) wird das intrazelluläre

Autoreaktivitäten zu unterbinden, von denen im gesunden Körper keine Gefahr ausgeht, würde die Immunabwehr nur unverhältnismäßig schwächen. Man denke z. B. an Cardiolipine, die im menschlichen Körper ausschließlich in der Mitochondrien-Membran – also rein intrazellulär – vorkommen, die jedoch Bestandteil fast jeder Bakterienmembran sind. Evolutionär hat es sich offensichtlich als Vorteil erwiesen, ein kontrolliertes Maß an Autoreaktivität zuzulassen. Zumal für den

Material nicht freigesetzt.

Fall einer unkontrollierten Zellzerstörung, z. B. durch Verletzung, Infektionen, Medikamente oder Umweltgifte, Sicherheitsmechanismen wie periphere Toleranz, Antinatürliche Autoantikörper, regulierende T-Zellen etc. existieren. So wird in den allermeisten Fällen die ungewollt stimulierte Autoreaktivität eingedämmt, bevor daraus eine Autoimmunerkrankung wird. Dennoch kann es zu einer – meist transienten – Erhöhung der ANA kommen.

Eine weitere Form unspezifischer ANA-Erhöhungen kann im Rahmen einer generellen Hypergammaglobulinämie beobachtet werden. Natürlicherweise z. B. während einer Schwangerschaft, wo hormonell die T-Zell- auf die B-Zellimmunität umgeleitet wird, um den Föten vor dem mütterlichen Immunsystem zu schützen. Ein ähnlicher Effekt kann aber auch durch eine Therapie mit TNF-alpha-Blockern hervorgerufen werden. Es können Titeranstiege auf > 1:10.000 beobachtet werden, ohne dass eine weitere Autoimmunerkrankung damit assoziiert sein muss. Das bedeutet, dass auch sehr stark erhöhte ANA keinen. autoimmunen Krankheitswert haben müssen. Aus diesem Grund sollten ANA nur bei begründetem klinischem Verdacht untersucht werden, denn nur dann muss auch gehandelt werden.

Was ist nun ein begründeter klinischer Verdacht?

Für die ANA-Untersuchung gibt es genau genommen nur **3 Indikationen**:

der klinische Verdacht auf eine Kollagenose

Besteht gemäß den Leitlinien bzw.
ACR- oder EULAR-Kriterien klinisch der
Verdacht auf eine Kollagenose und fallen
die ANA positiv aus, sollte eine
antigenspezifische Differenzierung
erfolgen. Die standardmäßige
Differenzierung (dsDNS-Ak/ENA) ist eher
historisch. Sie screent auf die früher
bekannten, häufigsten Ak aller
Kollagenosen. Das erscheint bei V.a.
Mixed Connective Tissue Disease

(MCTD) oder Overlap-Syndrome sinnvoll, ansonsten sollten jedoch die von den jeweiligen Leitlinien empfohlenen, krankheitsspezifischen Ak untersucht werden. Bei SLE ist es z. B. sehr viel sinnvoller, Ak gegen das ribosomale P-Protein als Scl70-Ak oder Jo1-Ak zu untersuchen.

Hinweis: Auch bei negativen ANA kann sich eine weiterführende Abklärung lohnen – nicht alle Ak lassen sich zu 100 % im IFT darstellen (z. B. SSA-Ak, Synthetase-Ak, Ak gegen Ribosomales P-Protein etc.).

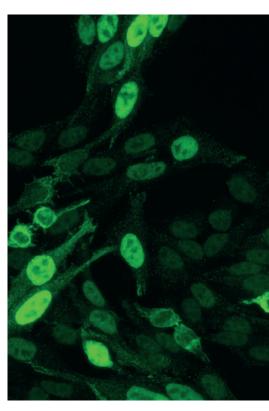
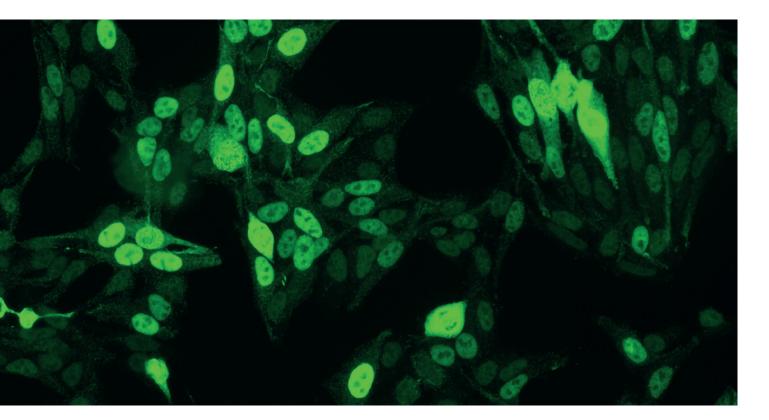


ABB. 1 Nachweis von ANA-IgG auf HEP-2-Zellen. Muster: Cyclin2/ CENP-F, Titer: 1:320

2) eine unklare Leberwert-Erhöhung


Bei unklaren Transaminasen-Erhöhungen sollten zur Abklärung einer Autoimmunen Hepatitis (AIH) laut Leitlinie ANA, ASMA, SLA und bei jungen Erwachsenen auch LKM-Ak untersucht werden. Ein positiver ANA ist zwar nicht beweisend, bestärkt jedoch, insbesondere bei zusätzlich erhöhtem Gesamt-IgG, die Indikation zur diagnosestellenden Leberbiopsie.

Bei erhöhten Cholestase-Parametern und negativen AMA sind im Rahmen der PBC-Diagnostik die ANA-Muster "multiple Nuclear Dots" und "Kernmembran" diagnostisch wegweisend, sollten bei entsprechendem Nachweis im IFT jedoch aus Spezifitätsgründen hinsichtlich der sp100- bzw. gp210-Ak weiter differenziert werden.

3) Juvenile Idiopathische Arthritis

Im Gegensatz zu den anderen Erkrankungen aus dem rheumatoiden Formenkreis im Kindesalter ist die JIA für gewöhnlich ANA positiv, weshalb die ANA-Untersuchung zur differenzialdiagnostischen Abklärung herangezogen wird. Im positiven Fall ist – sofern kein zusätzlicher V.a. eine Kollagenose oder AIH besteht – in der Regel keine weiterführende Diagnostik notwendig.

Wie immer in der Medizin gibt es auch in der ANA-Diagnostik Ausnahmefälle. Ein Beispiel ist das ANA-Muster Cyclin2/ CENP-F-Ak. Es kann unabhängig von einer zugrundeliegenden
Autoimmunerkrankung eine weitere
Abklärung erfordern. Je nach Studie
handelt es sich bei diesem Muster in
11-36 % um einen paraneoplastischen
Ak eines – meist noch unentdeckten –
Mamma- oder Lungen-Ca. In
Abhängigkeit von Titerhöhe und
Lebensalter sollte ggf. eine Tumorsuche
eingeleitet werden.

Zusammengefasst

- Im Regelfall ist ein positiver ANA nur bei Vorliegen einer der drei beschriebenen Indikationen relevant, da es eine Vielzahl von nichtautoimmunen Gründen für eine ANA-Erhöhung gibt.
- Bei klinischem Verdacht auf eine Kollagenose sollten die weiteren für die jeweilige Kollagenose spezifischen Differenzierungen entsprechend der Leitlinie bzw.
 ACR- oder EULAR-Kriterien durchgeführt werden.
- Bei erhöhten Transaminasen kann der positive ANA lediglich den Verdacht auf eine AIH erhärten, unterstützt so aber die Indikation zur diagnosestellenden Leberbiopsie.
- Bei einer JIA dient die ANA-Untersuchung der differenzialdiagnostischen Abgrenzung und erfordert in der Regel kein weiteres Handeln.
- Nur in Ausnahmefällen erfordert ein ANA außerhalb dieser Indikationen ein Handeln, z. B. Tumorsuche beim ANA-Muster Cyclin2/CENP-F.

Dr. med. habil. Gregor Caspari, Prof. Dr. med. Volker Kiefel

Autoimmunhämolytische Anämien

Bei autoimmunhämolytischen Anämien werden die roten Blutzellen durch Antikörper beschleunigt abgebaut. Folgen sind eine Anämie und ein erniedrigter Hämoglobinspiegel. Die gesteigerte Erythropoese bedingt meist eine starke Retikulozytose. Zeichen der Hämolyse sind ein erniedrigtes Haptoglobin, ein erhöhtes LDH und ggf. Bilirubin. Klinisch finden sich neben den allgemeinen Zeichen der Anämie ggf. eine Milzvergrößerung und ein Ikterus. Die Beladung der Erythrozyten mit Antikörpern wird im Labor durch den direkten Coombstest (EDTA-Blut) nachgewiesen. Je nach Temperaturoptimum der Antikörper im Labortest unterscheidet man autoimmunhämolytische Anämien vom Wärmetyp (WT-AIHA), vom Kältetyp (Kälteagglutininkrankheit) und eine Hämolyse vom Donath-Landsteiner-Typ.

Mykoplasmen und EBV), bei Kollagenosen und lymphoproliferativen Erkrankungen (besonders bei Erwachsenen) sowie nach Gabe verschiedener Medikamente auftreten. Frauen sind häufiger betroffen als Männer, ältere Menschen und Erwachsene viel häufiger als Kinder.

Die medikamentös induzierte
Autoimmunhämolyse ist in der Regel
abrupt und intravasal. Wichtig ist das
unverzügliche Absetzen des verdächtigen
Medikaments. Die infektassoziierte Form
ist meist unkompliziert und akut reversibel.
Die Prognose der chronisch
idiopathischen Form ist bei adäquater
Therapie günstig. Bei vorhandener
Grunderkrankung ist diese zu therapieren.
Eine bedrohliche Anämie ist mit
Erythrozytenkonzentraten zu behandeln.
Diese sollten sparsam verwendet

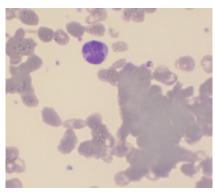


ABB. 2 Klumpenartige Zusammenballung von Erythrozyten im Blutausstrich als typisches Phänomen bei AIHA.

prätransfusionelle Diagnostik im Labor muss allerdings sicherstellen, dass zusätzliche Antikörper gegen Blutgruppen bei der Konservenauswahl berücksichtigt werden. Für die eigentliche Therapie der WT-AIHA stehen u.a. Kortikosteroide,

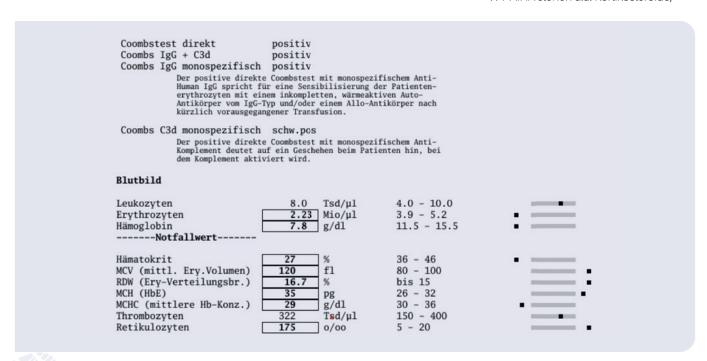


ABB. 1 Typische Laborbefunde bei AIHA: positiver Coombstest mit Bindung von IgG-Antikörpern und Komplement an die Erythrozytenoberfläche.

Anämie, MCV erhöht (durch Zusammenballung von Erythrozyten), Retikulozytenzahl erhöht (kompensatorisch gesteigerte Erythropoese).

Die genaue Ursache für die Entstehung der Wärmeautoantikörper lässt sich in etwa der Hälfte der Fälle nicht klären. Sekundär können sie als Begleiterkrankung bei Infektionen (besonders im Kindesalter, z. B. durch werden, da die Transfusionen die Autoimmunreaktion triggern können. Kreuzprobe und Eigenkontrolle sind durch die krankheitsbedingten Antikörper positiv, das sollte nicht von der nötigen Transfusion abhalten. Die

Immunsuppressiva und im Extremfall Anti-CD20 Antikörper zur Verfügung. Von der Splenektomie als Ultima ratio wird nur selten Gebrauch gemacht.

Die Therapiekontrolle besteht in Blutbild und direktem Coombstest.

Polymyositis und Dermatomyositis - idiopathische inflammatorische Myopathien im Überblick

Idiopathische inflammatorische Myopathien (IIM) gehören zu den seltenen, aber klinisch hochrelevanten Autoimmunerkrankungen. Trotz einer relativ niedrigen Inzidenz treten sie in Ihrer täglichen Praxis möglicherweise häufiger auf, als Sie zunächst vermuten würden - sei es durch unklare Muskelschwäche, therapieresistente Myalgien oder systemische Begleitsymptome. Die klassischen Vertreter, Polymyositis (PM) und Dermatomyositis (DM), stehen im Zentrum dieser Erkrankungsgruppe. Sie erfordern eine hohe diagnostische Wachsamkeit, da frühe Manifestationen oft unspezifisch erscheinen und systemische Komplikationen bis hin zu Tumorassoziationen auftreten können.

Ziel dieses Artikels ist es, Ihnen einen praxisnahen und zugleich wissenschaftlich fundierten Überblick über die wichtigsten Aspekte von PM und DM zu geben: von Pathogenese und Klinik über Diagnostik bis hin zu modernen Therapiestrategien.

Subtypen der idiopathischen inflammatorischen Myopathien

Die Klassifikation der IIM ist in den letzten Jahren zunehmend differenziert worden. Für Ihre Praxis ist es wichtig, die relevante Entitäten klar voneinander abzugrenzen:

- Polymyositis (PM):
 - charakterisiert durch symmetrische proximale Muskelschwäche ohne Hautbeteiligung.
- Dermatomyositis (DM):
 - Muskelschwäche in Kombination mit pathognomonischen Hautmanifestationen wie Gottron-Papeln oder heliotropem Erythem.
- Immunvermittelte nekrotisierende Myopathie (IMNM):

Oft abrupt einsetzende, schwere Muskelschwäche mit stark erhöhter Kreatinkinase (CK). Häufig assoziiert mit Anti-SRP- oder Anti-HMGCR-Antikörpern, u. a. im Zusammenhang mit Statintherapie. Inklusionskörpermyositis (IBM): betrifft vor allem ältere Männer, mit distaler, asymmetrischer Muskelschwäche und schlechtem Ansprechen auf Immunsuppression.

Overlap-Myositis:

Kombination von Myositis mit anderen Kollagenosen (z. B. systemischem Lupus erythematodes, Sklerodermie, Sjögren-Syndrom).

- Juvenile Dermatomyositis (JDM): Sonderform im Kindesalter mit erhöhter Kalzinose-Neigung und systemischen Komplikationen.
- Antisynthetase-Syndrom (ASS): Eine seltene Autoimmunerkrankung, die durch spezifische Autoantikörper gegen Aminoacyl-tRNA-Synthetasen gekennzeichnet ist, insbesondere Anti-Jo-1. Es äußert sich typischerweise durch eine Kombination aus Muskelschwäche (Myositis), Arthritis, interstitieller Lungenerkrankung, Raynaud-Phänomen und sogenannten "Mechanikerhänden".

Unterschiede in den extramuskulären klinischen Manifestationen, spezifische Befunde bei der Muskelbiopsie und krankheitsspezifische serologische Anomalien helfen dabei, die IIM-Subtypen voneinander zu unterscheiden.

Epidemiologie, Ätiologie und Pathogenese

IIM sind selten, betreffen v. a. Frauen (PM/DM) und Männer > 50 (IBM); DM oft mit Tumoren assoziiert. Malignom-Screening ist daher besonders wichtig. IIM entsteht multifaktoriell: Genetische HLA-Varianten, immunvermittelte Muskelzerstörung (z. B. durch CD8⁺-T-Zellen, Antikörper), plus Trigger wie Viren, Statine und UV-Licht.

Klinische Manifestationen

Muskelsymptome

Für Ihre Praxis entscheidend: Achten Sie auf symmetrische proximale Schwäche (Schulter- und Beckengürtelmuskulatur). Typische Beschwerden sind Schwierigkeiten beim Treppensteigen,

Aufstehen aus dem Sitzen oder Heben der Arme. Im fortgeschrittenen Stadium der Erkrankung kann die Schwäche auch die Mund-Rachen-Muskulatur (was zu Dysphagie und Aspiration führt) und die Atemmuskulatur (was zu einer restriktiven Lungenerkrankung oder sogar zu Atemversagen führt) beeinträchtigen.

Hautsymptome (Dermatomyositis)

- Gottron-Papeln: flache, rötlich-livide Papeln und Plaques unterschiedlicher Größe auf den Streckseiten von Händen und Fingern
- Heliotropes Erythem (periorbitales lilafarbenes Ödem)
- "Shawl- und V-Zeichen" (Erytheme an Brust und Rücken)
- Mechanikerhände (Hyperkeratose, Fissuren an den Händen)

Diese Hautveränderungen sind für Sie diagnostisch wegweisend.

Allgemeinsymptome

Fatigue, Myalgien, Fieber und Gewichtsverlust sind unspezifisch, aber häufig.

Systemische Manifestationen

IIM sind keine reinen Muskelerkrankungen.

Lunge:

Interstitielle Lungenerkrankung (ILD) tritt bei bis zu 40 % auf, besonders bei Anti-Jo-1-Antikörpern (Antisynthetase-Syndrom).

- Herz: Myokarditis, Arrhythmien, Herz-insuffizienz – oft unterschätzt, daher regelmäßiges kardiales Screening sinnvoll.
- GI-Trakt: Dysphagie mit Aspirationsgefahr.
- Malignome:

Starke Assoziation bei DM, v. a. Ovarial-, Mamma-, Lungen- und Gl-Karzinome.

Diagnostik

Klassische Kriterien

Die Bohan-und-Peter-Kriterien (1975) beinhalten:

- Symmetrische proximale Muskelschwäche.
- 2. Erhöhte Muskelenzyme (CK, LDH, Aldolase, AST/ALT).
- 3. EMG mit myopathischem Muster.
- 4. Muskelbiopsie mit entzündlichem Infiltrat.
- 5. Typische Hautveränderungen (nur bei DM).

Je nach Erfüllung dieser Kriterien erfolgt die Einordnung als "definitiv", "wahrscheinlich" oder "möglich".

Serologische Diagnostik

Bei IIM wurden verschiedene Autoantikörper identifiziert, unterteilt in Myositis-spezifische (MSA) und -assoziierte Antikörper (MAA).

MSA sind selten, aber diagnostisch relevant für bestimmte Myositis-Untergruppen und teils mit erhöhtem Risiko für Neoplasien oder ILD verbunden. MAA treten häufiger auf (bis zu 50 %) und sind auch bei anderen Autoimmunerkrankungen nachweisbar, die sich mit IIM überschneiden können.

Myositis-spezifische Antikörper

- Anti-Mi-2 → typisch für
 Dermatomyositis (DM); meist milder
 Verlauf, keine starke Risikoassoziation.
- Anti-TIF1-γ → DM, besonders bei Erwachsenen; stark mit Malignomen assoziiert.
- Anti-NXP2 → DM, v. a. bei Kindern und jungen Erwachsenen; erhöhtes Risiko für Malignome und schwere Muskelbeteiligung.
- Anti-MDA5 → DM; häufig mit ILD, Hautulzerationen und schwerem Verlauf.
- Anti-SAE → DM; v. a. mit Hautmanifestationen verbunden.

- Anti-Jo-1 → klassisch für Antisynthetase-Syndrom (ASS), das klinisch oft mit Myositis, interstitieller Lungenerkrankung (ILD), Arthritis, Fieber, Raynaud-Phänomen und Mechanikerhänden einhergeht.
- Anti-PL-7 / PL-12 / OJ / EJ / Ha /Ks / Zo → ebenfalls ASS; alle mit hohem Risiko für ILD.
- Anti-SRP → nekrotisierende
 Myopathie (NM); schwere Muskelnekrosen, schlechte Prognose.
- Anti-HMGCR → NM, oft Statin-assoziiert; ebenfalls mit Muskelnekrosen.
- Anti-cN1A (NT5C1A) → typisch für Einschlusskörpermyositis (IBM); oft mit Dysphagie und langsamem Verlauf.

Myositis-assoziierte Antikörper

- Anti-Ku: assoziiert mit Overlap-Myositis (OM); häufig bei systemischer Sklerose (SSc) und Lupus erythematodes (SLE).
- Anti-PM-Scl75 und Anti-PM-Scl100: beide mit OM und DM verbunden; stark assoziiert mit SSc, besonders bei Mischkollagenosen.
- Anti-Ro-52: typisch für OM, aber auch bei Sjögren-Syndrom, SSc und anderen Kollagenosen häufig nachweisbar.

Weitere Verfahren

- EMG (Elektromyografie):
 kurze, polyphasische Potenziale,
 Spontanaktivität.
- MRT: Nachweis entzündlicher Muskelödeme, wichtig zur Biopsieplanung.
- Muskelbiopsie: Goldstandard für die Diagnose, ermöglicht Subtypisierung.
- Lungenfunktionsdiagnostik und HRCT: bei Verdacht auf ILD.

Differentialdiagnosen

Muskeldystrophien, endokrine Myopathien (z. B. Schilddrüsenstörungen, Cushing), toxische Ursachen (Medikamente, Alkohol) sowie neurologische Erkrankungen wie ALS oder Myasthenia gravis.

Komplikationen

Unbehandelte IIM können zu Mobilitätsverlust, Dysphagie, ILD, kardialen Komplikationen und Tumoren (v. a. bei DM) führen.

Therapie

- Glukokortikoide: Prednisolon, langsame Reduktion nach Ansprechen.
- Immunsuppressiva: zur Steroidreduktion / bei refraktären Verläufen: Methotrexat, Azathioprin, Mycophenolat-Mofetil.
- Biologika: Rituximab wirksam bei refraktären Fällen.
- IVIG: besonders effektiv bei DM und therapierefraktären Fällen.
- Supportiv: Physio-, Ergotherapie; Logopädie bei Dysphagie.
- Tumorscreening: bei DM essenziell (CT-Thorax/Abdomen, gyn./uro. Abklärung, ggf. Endoskopie nach Risikoprofil).

Fazit

Polymyositis und Dermatomyositis stellen komplexe, immunvermittelte Erkrankungen dar, die eine präzise Diagnostik und interdisziplinäre Betreuung erfordern. Für Ihre Praxis ist entscheidend, bei unklarer Muskelschwäche frühzeitig an eine IIM zu denken, serologische Marker konsequent zu nutzen und systemische Komplikationen aktiv zu screenen.

Die Therapie bleibt herausfordernd, doch moderne Immuntherapeutika und ein strukturiertes Management verbessern die Prognose erheblich.

Eine enge Zusammenarbeit zwischen Rheumatologie, Neurologie, Dermatologie, Pneumologie und Onkologie ist hierbei der Schlüssel.

Quelle: dermnetz.org

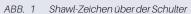


ABB. 2 Heliotropes Erythem

ABB. 3 Gottron Papeln

ABB. 4 V-Zeichen im Brustbereich

ABB. 5 Mechaniker-Hände

Literatur:

- 1. Wiendl H, et al. S2Kk-Leitlinie Myositissyndrome
- 2. UpToDate: Overview of and approach to the idiopathic inflammatory myopathies
- Dalakas, M. C. (2015). Inflammatory muscle diseases. New England Journal of Medicine, 372(18), 1734–1747.
- Lundberg, I. E., et al. (2017). 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies. Annals of the Rheumatic Diseases, 76(12), 1955-1964.
- Miller, T., et al. (2018). Genetics of inflammatory myopathies. Current Opinion in Rheumatology, 30(6), 623–629.
- Love, L. A., & Leff, R. L. (2009). Dermatomyositis and malignancy. Rheumatic Disease Clinics of North America, 35(1), 129–137.
- Allenbach, Y., et al. (2020). Immune-mediated necrotizing myopathy: clinical features and pathogenesis. Nature Reviews Rheumatology, 16(12), 689–701.
- Rider, L. G., & Miller, F. W. (2019). Classification and treatment of the idiopathic inflammatory myopathies. Rheumatic Disease Clinics, 45(4), 569–584.

Dr. med. habil. Felix Stelter

Diagnostisch relevante Autoantikörper

So wie Antikörper nur ein Teil der normalen Immunantwort sind, stellen Autoantikörper nur einen Teil der pathologischen Immunantwort gegen körpereigene Antigene dar.
Im Gegensatz zu Netzwerken aus Antigen-präsentierenden Zellen, T-Helferund regulatorischen T-Lymphozyten sowie verschiedenen immunologischen Effektorzellen sind sie jedoch einer einfachen Analyse zugänglich und deshalb die am längsten bekannten und am besten erforschten Phänomene von Autoimmunerkrankungen.

Autoantikörper sind stets das Produkt einer Störung der Immunregulation, aber nicht in jedem Fall auch pathogenetisch relevant. Bei einigen organspezifischen Erkrankungen besteht eine direkte Verbindung zwischen Autoantikörper und Klinik: TSH-Rezeptor-Ak imitieren durch ihre hochaffine Bindung an Thyreozyten die Wirkung des TSH und durchbrechen damit den physiologischen Regelkreis zwischen Hypophyse und Schilddrüse mit der Folge einer Hyperthyreose. Bei autoimmunhämolytischen Anämien werden mit Antikörpern beladene Erythrozyten in der Milz beschleunigt abgebaut.

Weit weniger klar ist dagegen die pathophysiologische Rolle der Rheumafaktoren oder der Antinukleären-Ak (ANA) bei Erkrankungen des rheumatischen Formenkreises. Viele dieser Antikörper sind wahrscheinlich nur ein – diagnostisch nutzbares – Epiphänomen der assoziierten Erkrankungen.

Bei einigen Autoimmunerkrankungen (z.B. Psoriasis, Sarkoidose, M. Bechterew) fehlen Autoantikörper ganz.

Eine Übersicht diagnostisch relevanter Autoantikörper finden Sie in der folgenden Tabelle.

ORGAN/ ORGANSYSTEM	ERKRANKUNG		
	Colitits ulcerosa		
Darm	Morbus Crohn		
	Zoeliakie		
	Pemphigus vulgaris		
Hout	Bullöses Pemphigoid		
Haut	Kutaner Lupus erythematodes		
	Sklerodermie		
CofäCo	Vaskulitis (DD)		
Gefäße	Thrombose/ Anti-Phospholipid-Syndrom (APS)		
	Rheumatoide Arthritis		
Gelenke	Arthritis bei systemischem Lupus erythematodes (SLE)		
	Autoimmunhepatitis		
Leber/ Galle	Primär biliäre Cholangitis (PBC)		
	Primär sklerosierende Cholangitis (PSC)		
Magen	Gastritis Typ A/ Perniziöse Anämie		
Nebenniere	Morbus Addison		
Nebenschilddrüsen	Primärer Hypoparathyreoidismus		
Niere	Glomerulonephritis (DD)		
Pankreas endokrin	Diabetes mellitus Typ 1		
	Granulomatose mit Polyangiitis (M. Wegener)		
Respirationstrakt/ Lunge	Goodpasture-Syndrom (Anti-GBM-Erkrankung)		
241190	Interstitielle Lungenerkrankung (Antisynthetase-Syndrom)		
Cabildania	Hashimoto-Thyreoiditis		
Schilddrüse	Morbus Basedow		
	Lambert-Eaton-Syndrom		
Skelettmuskel	Myasthenia gravis		
	Polymyositis/ Dermatomyositis		
Speicheldrüsen	Sjögren-Syndrom		
	Guillain-Barré-Syndrom		
	Neuromyelitis optica		
ZNS	Neuropathie bei IgM-Gammopathie		
	Paraneoplastische Syndrome des ZNS/ Limbische Enzephalitis		
	ZNS-Beteiligung bei systemischem Lupus erythematodes (SLE)		

DIAGNOSTISCH RELEVANTE AUTOANTIKÖRPER

ANCA. Becherzell-Ak

Pankreas exokrin-Ak

Transglutaminase (tTG)-IgA, Endomysium-IgA, Gliadin-Ak Bei IgA-Mangel: Transglutaminase (tTG)-IgG, Endomysium-IgG

Haut-Desmosomen-Ak, Desmoglein 1-Ak, Desmoglein 3-Ak

Haut-Basalmembran-Ak, BP180-Ak, BP230-Ak

ANA, dsDNS-Ak, Sm-Ak, RNP/Sm-Ak, SS-A-Ak, SS-B-Ak, Nukleosomen-Ak

ANA, CENP-A/B-Ak, Fibrillarin-Ak, Ku-Ak, NOR90-Ak, PDGFR-Ak, PM-Scl 75/100-Ak, RNA-Polymerase III-Ak, Ro-52-Ak, Scl-70-Ak, Th/To-Ak

ANCA, Myeloperoxydase (MPO)-Ak, Proteinase 3 (PR3)-Ak

Antiphospholipid-Ak: Lupus-Antikoagulanz und Ak gg. Cardiolipin, ß2-Glykoprotein 1

CCP-Ak, Rheumafaktor-IgM, Rheumafaktor-IgA, Rheumafaktor-IgG, MCV-Ak

ANA, dsDNS-Ak, Sm-Ak, RNP/Sm-Ak, SS-A-Ak, SS-B-Ak, Nukleosomen-Ak, Antiphospholipid-Ak: Lupus-Antikoagulanz und Ak gg. Cardiolipin, ß2-Glykoprotein 1

ANA, GMA, LC 1-Ak, LKM-Ak, SLA/LP-Ak

AMA, AMA-M2, Zentromere-Ak

ANCA (atypisch)

Parietalzell-Ak (=H/K-ATPase-Ak), Intrinsic-Faktor-Ak

Nebennierenrinden-Ak

Calcium-Sensing-Rezeptor-Ak (=Parathyreoidea-Ak)

Glomeruläre Basalmembran (GBM)-Ak, Phospholipase A2-Rezeptor (PLA2R)-Ak, THSD7-Ak, ANA, dsDNS-Ak, ANCA, C1q-Ak, Myeloperoxydase (MPO)-Ak, Proteinase 3 (PR3)-Ak, C3-Nephritisfaktor

Inselzell-Ak, Glutamat-Decarboxylase (GAD65)-Ak, Insulin-Ak, Thyrosinphosphatase (IA-2)-Ak, Zink Transporter 8 (ZnT8)-Ak

ANCA, Proteinase 3 (PR 3)-Ak

Glomeruläre Basalmembran (GBM)-Ak

Jo-1-Ak und weitere Auto-Ak gg. Aminoacyl-tRNA-Synthetasen: PL-7-Ak, PL-12-Ak, EJ-Ak, OJ-Ak, Ha-Ak, Ks-Ak, Zo-Ak

Thyroidea Peroxydase (TPO)-Ak, Thyreoglobin-Ak (TAK)

TSH-Rezeptor-Ak (TRAK)

Calcium-Kanal Typ P/Q-Ak,

Acetylcholin-Rezeptor-Ak, Muskelspezifische Tyrosinkinase (MuSK)-Ak, Titin-Ak

ANA, EJ-Ak, Jo-1-Ak, Ku-Ak, MDA5-Ak, Mi-2 -Ak, Mi-2ß-Ak, NXP2-Ak, OJ-Ak, PL-7-Ak, PL-12-Ak, PM-Scl 75/100-Ak, SAE1-Ak, SRP-Ak, TIF1gamma-Ak

ANA, SS-A-Ak, SS-B-Ak, Fodrin-Ak, Parotis-Ak,

Gangliosid-Ak

Aquaporin 4-Ak

Myelin-assoziiertes Glykoprotein (MAG)-Ak

Amphiphysin-Ak, ANNA3-Ak, CV2-Ak, GAD65-Ak, Hu (ANNA1)-Ak, Recoverin-Ak, Ri-Ak, SOX1-Ak, TA/Ma2 (PMNA2)-Ak, Titin-Ak, Tr [DNER]-Ak, Yo-Ak, Zic4-Ak, Kalium-Kanal (VGKC)-Ak: Ak gg. Contactin-assoziiertes Protein 2 (CASPR2), Leucin-reiches, Glioma-inaktiviertes Protein 1 (LGI1), Dipeptidyl-Peptidase-like Protein-6 (DPPX), Glutamat-Rezeptor-Ak: Ak gg. Glutamat-Rezeptoren der Typen NMDA /AMPA und den GABA B-Rezeptor

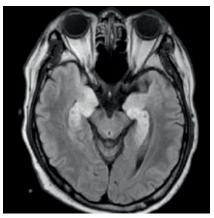
ANA, dsDNS-Ak, Sm-Ak, RNP/Sm-Ak, SS-A-Ak, SS-B-Ak, Nukleosomen-Ak, Ribosomen-Ak, Antiphospholipid-Ak: Lupus-Antikoagulanz und Ak gg. Cardiolipin, ß2-Glykoprotein 1

Michael Grünwald

Autoimmune Enzephalitis und paraneoplastische neurologische Syndrome

Beide Gruppen von

Autoimmunerkrankungen sind durch das Auftreten von Autoantikörpern gegen Proteine der Neuronen und Gliazellen gekennzeichnet, die Immunreaktion ist auf das ZNS beschränkt. Wird die Bildung der Autoantikörper durch einen soliden Tumor in der Peripherie getriggert, liegt ein paraneoplastisches Syndrom vor.


Bei der Autoimmun-Enzephalitis sind die Autoantikörper pathogen, nur in einem Teil der Fälle liegt ein Tumor vor. Die Prognose ist variabel und hängt davon ab, ob die immunsuppressive Therapie vor dem Eintreten irreversibler Schäden begonnen wird.

Bei den paraneoplastischen neurologischen Syndromen sind die Autoantikörper nahezu immer mit einem Tumor assoziiert. Für Verlauf und Prognose der neurologischen Symptome ist die Curabilität des zugrunde liegenden Tumors entscheidend. Der Nachweis spezifischer Autoantikörper im Serum und im Liquor ist im Labor möglich (s. Tabellen). Die Palette der mit diesen Syndromen assoziierten Antikörper erweitert sich ständig.

Literatur beim Verfasser

Autoantikörper bei autoimmuner Enzephalitis

AUTO-AK GEGEN	SYNONYM	ERKRANKUNG/ SYNDROM	KLINIK	PARANEOPLASIE
Glutamat-Rezeptoren				
NMDA Rezeptor		NMDAR-Enzephalitis	Epileptische Anfälle, Dyskinesien, Verhaltensauffälligkeiten, Psychose	Teratom des Ovars (> 50 % bei Frauen)
AMPA 1/2 Rezeptor	GluR1/GluR2	Limbische Enzephalitis	Verwirrung, Gedächtnisverlust	SCLC, Thymom, Mamma-Ca (ca. 50 %)
GABA-B Rezeptor	GABA Rezeptor Typ B	Limbische Enzephalitis	Epileptische Anfälle, Gedächtnisverlust, Verwirrung	SCLC (ca. 50 %)
Kalium-Kanäle				
LGI1		Limbische Enzephalitis	Gedächtnisverlust, faciobrachiale dystonische Anfälle, Hyponatriämie	Thymom (< 5 %)
CASPR2		Limbische Enzephalitis (Morvan Syndrom)	Gedächtnisverlust, Insomnie, Dysautonomie, Ataxie, Übererregbarkeit peripherer Nerven, neuropathischer Schmerz	Thymom (< 5 %)
DPPX		Enzephalitis	Myoklonie, Verwirrung, Tremor, Hyperekplexie, Diarrhoe, Gewichtsverlust	B-Zell-Neoplasie (< 10 %)
Astrozyten				
Aquaporin-4		Neuromyelitis optica	Sehstörungen, Querschnittssyndrom, Übelkeit, epileptische Anfälle	

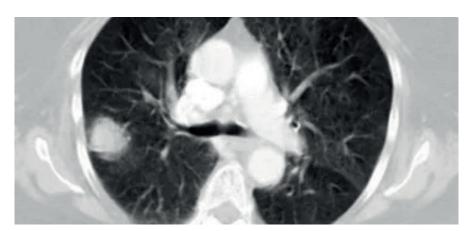


ABB. 2 Bronchialkarzinom

Autoantikörper bei paraneoplastischen neurologischen Syndromen

AUTO-AK GEGEN	SYNONYM	MANIFESTATION IM ZNS	PARANEOPLASIE			
Onkoneuronale Antikörper; in der überwiegenden Zahl der Fälle Tumor-assoziiert (> 95 %)						
Hu	ANNA-1	Enzephalomyelitis, Limbische Enzephalitis, Kleinhirndegeneration, Sensorische Neuropathie, Autonome Neuropathie (chronische gastrointestinale Obstruktion)	SCLC, Neuroblastom, Prostata-Ca, Merkel-Zell-Ca			
Yo	PCA-1	Kleinhirndegeneration	Ovarial-Ca, Mamma-CA, Uterus-Ca			
CV2	CRMP5	Enzephalomyelitis, Limbische Enzephalitis, Kleinhirndegeneration, Polyneuropathie, Optikusneuritis, Chorea	SCLC, Thymom			
Ma 1/2	Ta, PNMA2	Lmbische Enzephalitis,Rhombenzephalitis, Neuropathie	Mamma-Ca, Bronchial-Ca, Keimzell-Tumor I (Ma2)			
Ri	ANNA-2	Rhombenzephalitis, Opsoklonus-Myoklonus, Kleinhirndegeneration, Myelitis	Mamma-Ca, Ovarial-Ca, SCLC			
Amphiphysin		Stiff-Person Syndrom, Limbische Enzephalitis, Rhombenzephalitis, Kleinhirndegeneration, Polyneuropathie	Mamma-Ca, SCLC			
Recoverin		Retinopathie	Bronchial-Ca			
AUTO-AK GEGEN	SYNONYM	MANIFESTATION IM ZNS	PARANEOPLASIE			
Teilweise charakter	isierte Antikörpe	er, Tumor-Assoziation < 95 %				
Tr	DNER	Kleinhirndegeneration	Hodgkin-Lymphom, NHL			
Zic4		Kleinhirndegeneration	SCLC			
SOX-1	AGNA	Lambert-Eaton-Myasthenie-Syndrom (LEMS)	SCLC, Bronchial-Karzinoid			
PCA-2	280 kD Protein	Enzephalitis, LEMS, Neuropathie SCLC				

IgA-Nephropathie

Die Immunglobulin-A-Nephropathie (IgAN) ist die weltweit häufigste Form der primären Glomerulonephritis und zählt zu den Hauptursachen für **Nierenversagen**, insbesondere bei jungen Erwachsenen. Männer sind 2 bis 3-mal häufiger betroffen als Frauen. Die geschätzte Prävalenz der IgAN in Deutschland liegt gering oberhalb der EU-Definition einer "rare disease" (maximal ein Fall/2.000 Einwohner des Landes). In Asien tritt die Erkrankung 1,5 bis 2-mal häufiger auf, während sie in Afrika sehr selten ist.

Pathophysiologisch ist die IgAN durch die Ablagerung von Immunglobulin A im glomerulären Mesangium gekennzeichnet. Dies führt zu Veränderungen der extrazellulären Matrixkomponenten, zur Proliferation von Mesangialzellen, zu einer chronischen Inflammation und schließlich zu einem Verlust von Nephronen und einer zunehmenden interstitiellen Fibrose mit Ausfall der Filtermechanismen.

Bei molekularen Analysen wurde mesangiales IgA überwiegend als di- oder polymeres IgA1 nachgewiesen, wobei das IgA1-Molekül untergalaktosyliert ist ("galactose-deficient IgA1", Gd-IgA1). Dieses mesangial abgelagerte Gd-IgA1 stammt vermutlich aus Lymphozyten der intestinalen Mukosa im Sinne einer "Darm-Nieren-Achse". Große Schwankungen in der Prävalenz lassen zusätzliche genetische und mögliche Umweltfaktoren in der Pathogenese vermuten.

Die meisten Diagnosen einer IgANephropathie sind Zufallsbefunde im
Rahmen der Abklärung einer Hypertonie,
Mikrohämaturie, Proteinurie oder
Nierenfunktionseinschränkung. Die
Betroffenen weisen individuell
unterschiedliche Krankheitsverläufe auf,
die sowohl leicht als auch rapid-progressiv
ausgeprägt sein können. Eine
Spontanremission ist ebenfalls möglich.
Eine sehr hohe Dunkelziffer nicht
diagnostizierter und vergleichsweise
benigner Fälle ist anzunehmen. Oft wird
die Erkrankung jedoch erst bei schon

manifester Nierenfunktionsstörung mittels Nierenbiopsie festgestellt.

Die Nierenbiopsie ist der Goldstandard für die Diagnose einer IgA-Nephropathie, und die initialen histopathologischen Befunde haben eine große Bedeutung für die jeweilige Prognose. Die Bewertung der Bioptate erfolgt nach dem sog. Oxford MEST-C Score, welcher fünf Parameter umfasst:

- mesangiale Hyperzellularität (M),
- endokapillare Proliferation (E),
- segmentale Glomerulosklerose (S),
- interstitielle Fibrose und tubuläre Atrophie (T) sowie
- glomeruläre Halbmonde (C=Crescents).

Eine individuelle Prognoseeinschätzung ist bei erwachsenen Patienten über das "International IgAN Prediction Tool at biopsy" möglich (https://gxmd.com).

Die Prognose der IgAN ist sehr variabel. Bei einem erheblichen Anteil der Patienten führt sie zu einer fortgeschrittenen chronischen Nierenerkrankung (CKD) und Dialysepflichtigkeit (bis zu 50 %). Bei jüngeren Erwachsenen stellt sie eine der häufigsten Gründe für eine Nierentransplantation dar. Die oftmals späte Diagnosestellung ist auch auf die Tatsache zurückzuführen, dass es bisher keine spezifischen Biomarker gibt.

Die Bestimmung von IgA im Serum hat keine diagnostische oder prognostische Relevanz, da die IgA-Serumkonzentration nur in etwa der Hälfte der Fälle erhöht ist. Eine persistierende Mikrohämaturie bedarf unbedingt der weiteren Abklärung. Phasenkontrastmikroskopisch werden hierbei häufig dysmorphe Erythrozyten/Akanthozyten und

Erythrozytenzylinder nachgewiesen.
Neben den histopathologischen
Parametern der MEST-C-Klassifikation
sind die geschätzte glomeruläre
Filtrationsrate (eGFR), der Blutdruck,
das Ausmaß der Proteinurie, die Ethnie,
das Alter sowie Informationen zur
medikamentösen Behandlung
prognostisch bedeutsam.

Eine **episodische Makrohämaturie**, die häufig postinfektiös (meist nach einem viralen Infekt der oberen Atemwege) auftritt und oft mit einem akuten Nierenfunktionsverlust einhergeht, kann Anlass zur weiteren Abklärung einer möglichen IgAN sein. Die Immunglobulin-A-Vaskulitis (früher Purpura Schönlein-Henoch) mit Purpura, Arthralgien, IgAN und evtl. Darmbeteiligung stellt vermutlich eine systemische Variante der IgA-Nephropathie dar, die besonders im Kindesalter vorkommt.

Eine **sekundäre IgAN** kann insbesondere bei Darmkrankheiten, Leberzirrhose und rheumatischen Erkrankungen, aber auch im Zusammenhang mit verschiedenen anderen Krankheitsbildern auftreten (siehe TAB, 1).

Die therapeutische Hemmung von SGLT-2 (sodium-glucose linked transporter-2) in den proximalen Tubuli reduziert die Glukose-Rückresorption und fördert die Glykosurie, was zunächst zu einer verbesserten Blutzuckerkontrolle führt. Neben ihrer blutzuckersenkenden Wirkung haben SGLT2-Inhibitoren weitere Vorteile für Nieren und Herz-Kreislauf-System und werden daher als sinnvolle Ergänzung in der Behandlung von Patienten mit primärer Glomerulonephritis wie der IgAN verwendet.

Der neue Wirkstoff Sparsentan, ein dualer Endothelin-Angiotensin-Rezeptorantagonist, hat aufgrund seiner überzeugenden Wirksamkeit bei der Senkung der Proteinurie in der PROTECT-Studie jüngst die Zulassung durch die Entwicklung einer besonderen Budesonidgalenik geführt, die auf eine intestinale/mukosale Immunmodulation bei Hochrisikopatienten ausgerichtet ist (targeted release formulation, TRF-Budesonid). Diese führt zur fokussierten Freisetzung des Glukokortikoids im terminalen Ileum, dem Ort der höchsten Dichte des

mukosalen Immunsystems.

Die Weiterentwicklung von zusätzlichen neuen Behandlungsstrategien, die spezifisch auf die pathogenetischen Prozesse der Erkrankung zugeschnitten sind (wie z. B. der Einsatz von Komplementhemmern oder Inhibitoren der B-Zell-Proliferation) wird künftig noch eine deutlich stärkere individualisierte Behandlung ermöglichen.

Therapeutische Möglichkeiten

LOKALISATION	ERKRANKUNG
Darm/Leber	M. Crohn, Colitis ulcerosa, Zöliakie, Leberzirrhose
Infektionen	HBV, HCV, HIV, Tuberkulose, Staphylokokken
Autoimmun	Ankylosierende Spondylitis, rheumatoide Arthritis, Sjögren-Syndrom, IgA-Vaskulitis (Purpura Schönlein-Henoch)
Malignome	Bronchial-CA, Nierenzell-CA, Lymphom, IgA-Myelom
Lunge	Sarkoidose, Bronchiolitis obliterans, zystische Fibrose
Haut	Dermatitis herpetiformis, Psoriasis

TAB. 1 Ursachen einer sekundären IgAN

Umfangreiche supportive Maßnahmen zur Progressionsverzögerung der CKD stellen einen essenziellen Baustein in der Behandlung der IgA-Nephropathie dar. Änderung des Lebensstils, einschließlich Ernährungsumstellung und Raucher-Entwöhnung, sind dabei wesentliche Bestandteile.

Hemmstoffe des RAAS (Renin-Angiotensin-Aldosteron-Systems), darunter Angiotensin-Converting-Enzym (ACE)-Hemmer und Angiotensin-II-Rezeptor-Blocker (ARB) sind grundlegende Therapien und werden sowohl zur Kontrolle des Blutdrucks als auch zur Verringerung der Proteinurie eingesetzt.

European Medicines Agency (EMA) und die Food and Drug Administration (FDA) erhalten. Der G-BA (Gemeinsamer Bundesausschuss) sieht in seiner Nutzenbewertung dessen Anwendung zur Behandlung von Erwachsenen mit primärer IgA-Nephropathie mit einer Ausscheidung von Eiweiß im Urin von ≥ 1,0 g/Tag (oder einem Protein/ Kreatinin-Quotienten im Urin von ≥ 0,75 g/g) vor. Als dualer Wirkstoff kann Sparsentan anstelle einer Therapie mit RAAS-Inhibitoren eingesetzt werden.

In der IgAN-spezifischen Therapie hat die pathogenetisch zentrale Rolle des intestinalen Immunsystems kürzlich zur

Literatur:

- Seikrit C, Floege J. IgA-Nephropathie. Nephrologie 2025:20:3-11
- 2. Floege J. IgA-Nephropathie. CME Urologie 2024:63:103-111
- Schimpf J et al. Diagnostik und Therapie IgA-Nephropathie – 2023. Wien Klin Wochenschr (2023) 135 (Suppl 5):621–627
- Girndt M. Immunglobulin-A-Nephropathie neue therapeutische Möglichkeiten. Innere Medizin 2024-65:407-413
- Schricker S et al. Behandlung der chronischen Nierenkrankheit bei IgA-Nephropathie. Dtsch Med Wochenschr 2025; 150:83-90
- Bekanntmachung eines Beschlusses des G-BA
 über eine Änderung der Arzneimittel-Richtlinie
 (AM-RL): Anlage XII Nutzenbewertung von
 Arzneimitteln mit neuen Wirkstoffen nach § 35a
 des Fünften Buches Sozialgesetzbuch (SGB V) Sparsentan (Immunglobulin A-Nephropathie,
 primäre). Banz AT 17.03.2025 B2

Was steckt hinter wiederkehrendem Fieber? Periodische Fiebererkrankungen und Autoinflammation

Fast jeder kennt das: Fieber tritt auf, wenn unser Körper sich gegen eine Infektion wehrt – z. B. bei einer Erkältung oder Grippe. Doch was, wenn Fieber immer wiederkommt, ohne dass eine erkennbare Infektion vorliegt? Hier muss an sogenannte periodische Fiebererkrankungen gedacht werden – eine Gruppe seltener, aber wichtiger Krankheitsbilder, die zu den autoinflammatorischen Erkrankungen gehören.

Was bedeutet "Autoinflammation"?

Autoinflammation beschreibt eine chronische Fehlregulation im angeborenen Immunsystem – also dem Teil unseres Abwehrsystems, der sofort auf Krankheitserreger reagiert, dabei jedoch eine geringe Spezifität aufweist. Bei autoinflammatorischen Erkrankungen wird diese Immunantwort fälschlicherweise auch dann aktiviert,

wenn keine Anzeichen einer Infektion vorliegen – sie sind genetisch bedingt. Das führt unter anderem zu wiederkehrendem Fieber, oft begleitet von Gelenkschmerzen, Hautausschlägen, Bauch- oder Brustschmerzen. Im Gegensatz zu Autoimmunerkrankungen werden keine hochtitrigen Autoantikörper und autoreaktiven T-Zellen nachgewiesen.

Was sind periodische Fiebererkrankungen?

Zu den periodischen Fiebererkrankungen zählen z. B. das familiäre Mittelmeerfieber (FMF), das Cryopyrin-assoziierte periodische Syndrom (CAPS) und das TNF-Rezeptor assoziierte periodische Syndrom (TRAPS). Diese Erkrankungen beginnen oft im Kindesalter und verlaufen in Schüben. Die Symptome verschwinden zwischen den Schüben meist vollständig, was die Diagnose erschwert.

Wie erkennt man sie?

Typisch sind:

- wiederkehrende Fieberschübe ohne erkennbare Ursache
- Schwellungen oder Schmerzen in Gelenken
- Hautveränderungen (Ausschläge, Rötungen)
- Bauch-, Brust- oder Muskelschmerzen
- ggf. familiäre Häufung

Da diese Symptome auch bei vielen anderen Krankheiten vorkommen, dauert es häufig lange, bis die richtige Diagnose gestellt wird. Spezialisierte Fachärzte, oft aus der Rheumatologie oder Immunologie, können mithilfe von Bluttests und genetischen Untersuchungen die Ursache klären.

Wie diagnostiziert man sie?

Für die periodischen Fiebersyndrome existieren klinische Diagnosekriterien, die sog. Eurofever/PRINTO Kriterien.

Zur Diagnosesicherung sollte eine genetische Testung erfolgen.

Ist Autoinflammation behandelbar?

Ja! Auch wenn es sich um chronische Erkrankungen handelt, lassen sich viele autoinflammatorische Syndrome heute gut behandeln – z. B. mit entzündungshemmenden Medikamenten wie Colchicin oder modernen Biologika, die gezielt in das fehlgesteuerte Immunsystem eingreifen.

Wichtig ist, die Krankheit früh zu erkennen, um mögliche Komplikationen wie Organschäden zu vermeiden.

Wiederkehrende Fiebererkrankungen im Detail:

Familiäres Mittelmeerfieber (FMF)

FMF ist die weltweit häufigste monogene Autoinflammation – besonders verbreitet in Mittelmeerregionen. Die Erkrankung äußert sich durch wiederkehrende Fieberschübe, oft verbunden mit Bauch- oder Brustschmerzen und Gelenkbeschwerden. Unbehandelt kann sich eine AA-Amyloidose entwickeln – eine ernsthafte Komplikation, bei der Eiweißablagerungen vor allem in den Nieren zu Organschäden führen.

Verantwortlich für das FMF sind pathogene Varianten im MEFV-Gen auf Chromosom 16, das für das Protein Pyrin (auch Marenostrin) kodiert. Normalerweise regelt Pyrin die Entzündungsprozesse, doch durch Gain of Function Mutationen kommt es zu übermäßiger Aktivierung des Pyrin-Inflammasoms und vermehrter Freisetzung entzündlicher Botenstoffe wie IL-1ß. Die Erkrankung wird autosomalrezessiv vererbt, es sind jedoch Varianten im MEFV-Gen bekannt, die auch im heterozygoten Zustand zu Symptomen führen. Exakte Fallzahlen sind nicht dokumentiert, doch FMF gilt als die häufigste auto-inflammatorische Erkrankung weltweit. In Deutschland liegen Daten aus dem GARROD-Register vor: von 136 Patienten mit monogener Autoinflammation waren 71 (52 %) mit FMF diagnostiziert.

Die Standardtherapie ist Colchicin, das Fieberschübe lindert und das Risiko für Amyloidose senkt. Bei Colchicin-Resistenz können Interleukin-1-Inhibitoren wie Anakinra, Canakinumab oder Rilonacept eingesetzt werden.

Cryopyrin-assoziiertes periodisches Syndrom (CAPS)

Cryopyrin-assoziiertes periodisches Syndrom (CAPS) ist eine seltene autoinflammatorische Erkrankung, die ein breites Spektrum klinischer Manifestationen umfasst, die sich in Schweregrad und Symptomausprägung unterscheiden. Zu den Hauptformen zählen:

- Familial Cold Autoinflammatory Syndrome (FCAS), hier werden durch Kälte Entzündungsschübe ausgelöst
- Muckle-Wells-Syndrom (MWS)
- Chronisch infantile neurologische kutane u. artikuläre Syndrome (CINCA)

Zu den Symptomen gehören:

- wiederkehrende Fieberschübe
- urtikarielle Hautausschläge
- Gelenkbeschwerden (Arthralgien, Arthritis)
- Bindehautentzündungen
- Hörverlust (beim MWS)

und bei einer schweren Verlaufsform

 eine ZNS-Beteiligung (v. a. bei CINCA) mit z. B. aseptischer Meningitis und Entwicklungsverzögerung

Verursacht wird CAPS durch pathogene Varianten im *NLRP3* Gen (auch als *CIAS1* bekannt) auf Chromosom 1, das für das Protein Cryopyrin codiert. Dies führt zu einer Überaktivierung des Inflammasoms und einer gesteigerten Produktion von Entzündungsmediatoren. CAPS wird in der Regel autosomal-dominant von einem betroffenen Elternteil vererbt, es sind aber auch Neumutationen beschrieben.

CAPS ist sehr selten: Die Prävalenz liegt bei etwa 2 bis 5 Fällen pro 1 Million Menschen. Aufgrund des breiten Spektrums werden milde Verlaufsformen (z. B. FCAS) möglicherweise nicht immer korrekt diagnostiziert. Eine zentrale Rolle bei der Behandlung spielt hier die Blockade von IL-1ß. IL-1-Inhibitoren wie Anakinra, Canakinumab oder Rilonacept können Symptome kontrollieren und Komplikationen verhindern. Frühzeitige Diagnose und Therapiebeginn sind entscheidend, um Langzeitschäden zu vermeiden.

TRAPS (TNF-Rezeptor-assoziiertes periodisches Syndrom)

TRAPS ist eine seltene Entzündungserkrankung mit lang anhaltenden Fieberschüben, begleitet von Muskel- und Bauchschmerzen, Lymphknotenschwellungen sowie Hautausschlägen. Häufig beginnt die Erkrankung in der Kindheit, kann aber auch erst im Jugend- oder Erwachsenenalter auftreten.

Pathogene Varianten im *TNFRSF1A* Gen auf Chromosom 12 beeinträchtigen die Funktion des TNF-Rezeptor-1, was Entzündungen auslöst und zur Produktion von proinflammatorischen Zytokinen führt. Der Erbgang ist autosomal-dominant.

TRAPS ist extrem selten – etwa 1 Fall pro 1 Million Menschen. In der deutschen GARROD-Datenbank hatten 19 von 136 Patienten (14 %) eine TRAPS-Diagnose. Kortikosteroide und NSAIDs können akute Schübe mildern. Als Dauertherapie bzw. zur Prophylaxe kommen Etanercept, Anakinra, Canakinumab und ggf. Colchicin zum Einsatz. Die anti-IL-1-Therapien können dabei zudem auch amyloidbezogenen Schäden vorbeugen.

Literatur

- Blank, N., Kötter, I., Schmalzing, M., Rech, J., Krause, K., Köhler, B., Kaudewitz, D., Nitschke, M., Haas, C. S., Lorenz, H. M., & Krusche, M. (2024). Clinical presentation and genetic variants in patients with autoinflammatory diseases: results from the German GARROD registry. Rheumatology International, 44(2), 263–271.
- Bonnekoh, H., Krusche, M., Feist, E. et al. Autoinflammatorische Syndrome. Innere Medizin 64, 442–451 (2023).
- Deuitch N, Cudrici C, Ombrello A, et al. TNF Receptor-Associated Periodic Fever Syndrome. 2022 Nov 10. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2025
- Migita, K., Fujita, Y., Asano, T., & Sato, S. (2023). The Expanding Spectrum of Autoinflammatory Diseases. Internal Medicine (Tokyo, Japan), 62(1), 43–50.
- Neven, B., Callebaut, I., Prieur, A. M., Feldmann, J., Bodemer, C., Lepore, L., Derfalvi, B., Benjaponpitak, S., Vesely, R., Sauvain, M. J., Oertle, S., Allen, R., Morgan, G., Borkhardt, A., Hill, C., Gardner-Medwin, J., Fischer, A., & de Saint Basile, G. (2004). Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood. 103(7). 2809–2815.
- Welzel, T., & Kuemmerle-Deschner, J. B. (2021). Diagnosis and Management of the Cryopyrin-Associated Periodic Syndromes (CAPS): What Do We Know Today?. Journal of Clinical Medicine, 10(1), 128.

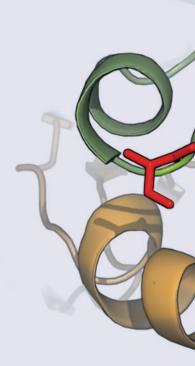
Dr. med. habil. Felix Stelter

HLA-Assoziationen bei Autoimmunerkrankungen - Wo liegt ihr diagnostischer Nutzen?

Unter HLA (Human Leukocyte Antigens; syn. MHC-Antigene: Major
Histocompatibility Complex Antigens), versteht man eine Gruppe von Proteinen, die auf allen kernhaltigen Zellen und
Thrombozyten – HLA A, B, C bzw. MHC Klasse I – oder nur auf professionellen
Antigen-präsentierenden Zellen (z. B. Makrophagen) – HLA DR, DP, DQ bzw.
MHC Klasse II – vorkommen.

Sie sind, bildlich gesprochen, so etwas wie ein Präsentierteller, auf dem der Zellinhalt, genauer Proteine - zerlegt in Peptidbruchstücke – dem T-Zell-Rezeptor der T-Lymphozyten dargeboten werden. Die T-Lymphozyten ihrerseits nutzen eine Art "Zwei-Faktor-Identifizierung": sie erkennen das HLA-Molekül und das Peptid. Wird eines von beiden als "fremd" identifiziert (Peptidfragmente intrazellulärer Pathogene oder ein fremdes HLA-Molekül bei Transplantationen), wird eine Immunreaktion initiiert. HLA-Moleküle nehmen demzufolge eine Schlüsselstellung in der Regulation der Immunabwehr ein. HLA-Moleküle sind in der Population hoch polymorph, die Wahrscheinlichkeit, dass zwei nicht verwandte Individuen in allen HLA-Merkmalen identisch sind, liegt unter 1:10.000. Während manche Peptide durch bestimmte HLA-Allele besonders gut präsentiert werden können, passt umgekehrt nicht jedes Peptid auf jeden Präsentierteller. Darauf gründet zu einem wesentlichen Teil die unterschiedliche Suszeptibilität von Individuen auf Infektionserkrankungen. Für den einzelnen kann das fatale Folgen haben, für die Spezies ist die Vielfalt der HLA-Moleküle ein evolutionärer Vorteil, wenn sie mit neuen, hochpathogenen Krankheitserregern konfrontiert wird.

Auch viele Autoimmunerkrankungen sind mit bestimmten HLA-Allelen assoziiert. Daraus resultiert die genetische Komponente dieser Erkrankungen, vererbt wird aber nur ein erhöhtes Krankheitsrisiko, nicht die Erkrankung selbst.


Welchen diagnostischen Nutzen man aus dem Vorhanden- oder Nichtvorhandensein bestimmter HLA-Merkmale ziehen kann, soll am Beispiel der Assoziation des Morbus Bechterew mit HLA B27 erläutert werden. Basierend auf einem Querschnitt an Literaturangaben wurden für die Tabelle folgende statistische Parameter zugrunde gelegt:

- eine Krankheitsprävalenz von 0,25 %
- das Vorhandensein von HLA B27 bei 8 % aller Personen und bei 95 % der Bechterew-Patienten

Die Zahlen wurden für eine Population von 100.000 Personen berechnet. Daraus errechnet sich ein relatives Risiko eines HLA B27-Merkmalsträgers, an einem M. Bechterew zu erkranken, von (238/ 8.000) / (12/92.000) = 228 im Vergleich

	B27 POSITIV	B27 NEGATIV	
M. Bechterew ja	238	12	250
M. Bechterew nein	7.762	91.988	99.750
	8.000	92.000	100.000

Räumliche Struktur eines MHC-Klasse II-Moleküls als Heterodimer der α - (grün) und β - (orange) Ketten. Zwei alpha-Helices bilden mit einer β -Faltblattstruktur eine Grube, in der das Peptid (rot) über elektrostatische Wechselwirkungen und Wasserstoffbrückenbindungen verankert ist. [12].

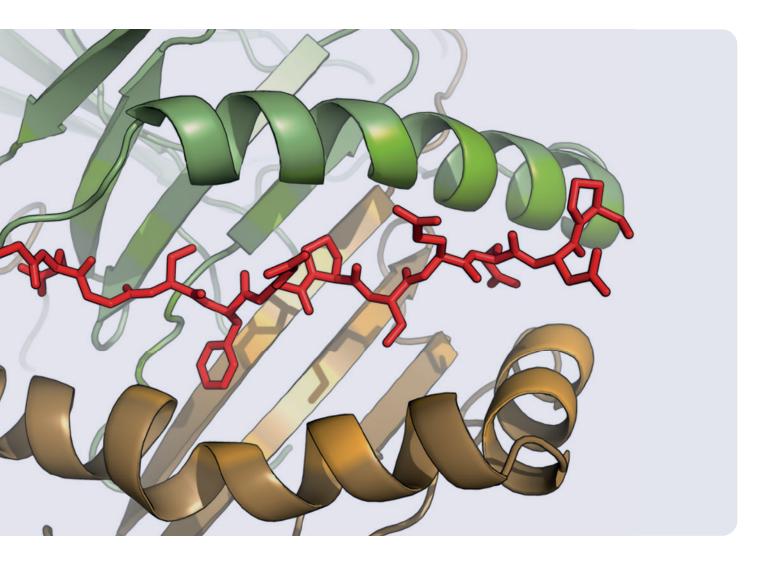
Ouelle

Amino acid signatures in the HLA class II peptide-binding region associated with protection/susceptibility to the severe West Nile Virus disease - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/MHC-class-II-molecules-are-heterodimers-consisting-of-agreen-and-b-orange-chains-The_fig1_328648626 [accessed 23 Sept 2025]

zu einem Nichtmerkmalsträger. Das klingt viel, aber tatsächlich erkranken nur 3 % (238 von 8.000) aller Merkmalsträger (= absolutes Risiko). Der Nachweis von HLA B27 ist demzufolge nicht Diagnosebeweisend. Andererseits erkranken nur 0,013 % der Nichtmerkmalsträger an einem M. Bechterew: das Fehlen von B27 schließt damit die Diagnose mit einer hohen Wahrscheinlichkeit aus.

Wann sollte man bei der Diagnostik von Autoimmunerkrankungen auf die Bestimmung von HLA-Merkmalen zurückgreifen?

 Die klinischen Kriterien sind nur teilweise erfüllt, evtl. liegt ein Frühstadium vor.


- Spezifische Autoantikörper stehen nicht zur Verfügung oder sind nicht nachweisbar.
- Die Ausschlusswahrscheinlichkeit bei Nichtvorliegen des krankheitsassoziierten Merkmals ist hinreichend groß.

Lohnt es sich, diese Marker für ein Screening asymptomatischer Patienten mit Familienanamnese einzusetzen? Nein – da spezifische Therapien zur Prävention von Autoimmunerkrankungen bisher nicht zur Verfügung stehen. Es gibt aber Ausnahmen: Die ESPGHAN-Leitlinie empfiehlt explizit die Bestimmung der Zoeliakie assoziierten Merkmale HLA-DQ2 und HLA-DQ8 bei asymptomatischen Kindern und Jugendlichen, wenn Verwandte 1.

Grades erkrankt sind oder wenn bestimmte Komorbiditäten (z.B. Typ-1-Diabetes mellitus, autoimmune Schilddrüsenerkrankungen) vorliegen.

Der Typ-1-Diabetes ist besonders mit den HLA-Haplotypen DR3-DQ2 und DR4-DQ8 assoziiert, die bei bis zu 90 % aller Typ-1-Diabetes-Patienten vorkommen.

Mit dem Advent von Therapien, die die Manifestation eines Typ-1-Diabetes verzögern, in Zukunft vielleicht sogar verhindern können, kann die Bestimmung dieser Merkmale bei asymptomatischen Patienten sinnvoll sein. Aktuell hat aber die Bestimmung Diabetes-assoziierter Autoantikörper (IA2-, Insulin-, GAD65-und ZnT8-Ak) im präsymptomatischen Stadium einen höheren Stellenwert.

Myasthenia gravis

Bei der Myastenia gravis ist die neuromuskuläre Übertragung an der motorischen Endplatte im typischen Fall durch Antikörper gegen den Acetylcholin-Rezeptor blockiert, was zu einer Beeinträchtigung der neuromuskulären Übertragung und damit zur Muskelschwäche insbesondere nach Belastung führt. Diese beginnt typischerweise bei Augenlidern (Ptose) und Augenmuskeln (Doppelbilder), kann aber auch Sprache, Schlucken, Nackenmuskulatur und in sehr ausgeprägten Formen sogar Extremitäten- und Atemmuskulatur betreffen.

Zum Hausarzt kommen die Patienten oft wegen verstärkter Ermüdbarkeit. Die muskuläre Schwäche bessert sich nach Ruhe und nimmt bei Belastung zu (z. B. eine Minute nach oben blicken → hängendes Augenlid).

Bei 85 % bis 90 % der Patienten beweist das Vorhandensein von Antikörpern gegen den **Acetylcholin-Rezeptor** die

Literatur beim Verfasser

Diagnose, im negativen Falle sollten Antikörper gegen die **muskel-spezifische Tyrosinkinase** (MuSK-Ak) bestimmt werden.

Weitere diagnostische Ergänzungen, insbesondere bei (für beide vorgenannten Antikörper) negativen Patienten sind Autoantikörper gegen Titin und gegen das Low Density Lipoprotein Receptor-related Protein 4 (LRP4).

Vor allem bei jüngeren Patienten (< 50 Jahre) weisen Titin-Antikörper auf ein Thymom hin. Selten sind für eine Diagnose neurophysiologische Tests nötig.

Als Therapie stehen Cholinesterase-Hemmer und Immunsuppressiva zur Verfügung. Bei Nachweis eines Thymoms sollte dieses immer entfernt werden. Unter Therapie bessern sich die Symptome über Wochen bis Monate.

Impressum Newsletter der Sonic Healthcare Germany

Herausgeber

Sonic Healthcare Germany GmbH & Co. KG Geschäftsführer: Evangelos Kotsopoulos (V.i.S.d.P.) Mecklenburgische Straße 28, 14197 Berlin www.sonichealthcare.de

Ein Service Ihres Laborpartners Labor Oldenburg

MVZ Medizinisches Labor Oldenburg GmbH Koppelstraße 7 26135 Oldenburg Telefon: 0441 3614080 www.medlab-oldenburg.de